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Abstract

Phallusia nigra is a cosmopolitan solitary ascidian with a distinct niger-blue tunic that is

considered to be an easy diagnostic feature, even in the field. The wide geographic

distribution of this species may have been a result of the overconfidence of taxonomists and

ecologists in the assignment of unknown specimens to this species, based on this simple

diagnostic character. Indeed, there seems to be a correlation between cosmopolitanism and the

presence of few, but very conspicuous diagnostic characters in benthic invertebrate species.

Almost invariably, genetic studies have demonstrated that the cosmopolitanism of those

species is artificial and that, rather, they are made up of groups of morphologically very

similar, but genetically distinct, species. Thus, we decided to verify the specific status of

Western Atlantic populations of P. nigra, from Miami (USA) to São Paulo (southeastern

Brazil) by estimating genetic variation and population structure levels along the entire range

of this ascidian in the Western Atlantic. The analysis of 10 allozyme systems shows high

levels of mean heterozygosity (H = 0.28) so that P. nigra has genetic variation levels more

related with other invertebrates than to their, phylogenetically closer, chordate relatives (that

show lower levels of heterozygosity). The genetic structure of the population was relatively

high (FST = 0.083) for conspecific populations, but much lower than what would be expected

if they belonged to different species. High levels of gene identity also indicate that the

Western Atlantic population of P. nigra constitutes a single species. This result suggests an

extremely high dispersal capability of the larvae of this ascidian or a relatively recent range

expansion of its populations. Since this species is commonly found in harbors, the
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anthropogenic transport (p.e., in ballast water) may have contributed for the observed genetic

homogeneity.
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1. Introduction

Phallusia nigra Savigny 1816 is a common solitary ascidian in many tropical areas

around the world. The tunic of P. nigra is smooth and, because of the accumulation of

strong acids, it is seldom covered by fouling organisms. Its large size (up to 10 cm long (da

Rocha et al., 1999)) and deep black colour (Hirose, 1999) makes P. nigra a very

conspicuous ascidian in the benthic habitats wherever it occurs (da Rocha et al., 1999).

P. nigra was originally described for the Red Sea and, since then, it has also been reported

in the Indian, the Pacific and the Atlantic Oceans (da Rocha et al., 1999a; Meenakshi,

1998; Van Name, 1945).

Nevertheless, the cosmopolitanism of this ascidian is at odds with what has been

observed for many benthic marine invertebrates. In most cases, wide distributional ranges

of marine invertebrate species have been found to be the result of an over-conservative

taxonomy (e.g., Knowlton, 2000; Thorpe and Solé-Cava, 1994; Klautau et al., 1999).

Since the existence of cryptic species has been demonstrated in other ascidians (Aron and

Solé-Cava, 1991; Dalby, 1997; Degnan and Lavin, 1995), it is possible that the

cosmopolitanism attributed to P. nigra is also artifactual.

In this study, we used allozymes to compare populations of P. nigra over its entire

distribution on the West Atlantic, from Florida, USA to São Paulo, Brazil. We found

surprisingly high levels of gene similarity between the populations analysed and

concluded that, at least for the Atlantic Ocean, a high genetic homogeneity for this

ascidian species cannot be ruled out.
2. Material and methods

Samples of P. nigra (N = 157) were collected by snorkelling or scuba-diving from five

different locations over its entire range of distribution in the Western Atlantic. The

locations (latitude and longitude) and sample sizes were as follows: Florida (Florida Keys:

25j46VN, 80j16VW—58 samples), Panama (Bocas del Toro: 09j19VN, 82j17VW—29

samples) and the Brazilian locations were Cabo Frio (22j45VS, 42j01VW—25 samples),

Angra dos Reis (23j00VS, 45j04VW—25 samples) and São Paulo (23j27VS, 45j04VW—

20 samples) (Fig. 1). All samples were transported live or on ice to the laboratory, where

they were kept in liquid nitrogen until analysis.

Allozymes were extracted from the digestive gland in one volume of distilled water

and analysed through 12.5% starch gel electrophoresis, using the Tris citrate pH 8.0

(Ward and Beardmore, 1977) and the lithium hydroxide pH 8.1 (Selander et al., 1971)
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Fig. 1. Map of sampling area with collection sites.
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buffer systems. After electrophoresis, the gels were sliced and stained using standard

procedures (Manchenko, 1994). Twenty-five enzyme systems were initially essayed, but

only 9 (10 loci) gave interpretable and reproducible results.

Genotype frequencies, obtained from the scoring of the gels, were used to estimate gene

frequencies, fits to Hardy-Weinberg equilibrium, mean heterozygosities and inbreeding

indices (Wright, 1978), using the BIOSYS 1.7 programme (Swofford and Selander, 1981).

Pairwise genetic distances and their standard errors (Nei, 1972; Nei, 1978) were also

calculated with this program.

A rough estimate of the expected effective number of migrants per generation was

obtained from FST as Nem=(1�FST)/4FST (Wright, 1978). Although this estimate relies on

a number of assumptions that often are not met in natural populations (Whitlock and



Table 1

Gene frequencies and average heterozygosities for populations of P. nigra studied

Locus Florida Panama Brazil

Cabo Frio Angra dos Reis São Paulo

Pgi

(N) 6 18 17 25 19

A – 0.20 0.12 0.14 0.21

B 1.00 0.72 0.88 0.86 0.76

C – 0.08 – – 0.03

a-Est-1
(N) 27 19 17 25 20

A 0.56 0.16 0.38 0.36 0.52

B 0.18 0.45 0.29 0.24 0.20

C 0.26 0.39 0.33 0.40 0.28

Adh

(N) 5 16 17 25 10

A 0.60 0.94 0.65 0.96 0.55

B 0.40 0.06 0.35 0.04 0.45

Mdh

(N) 17 11 16 17 20

A 0.91 0.59 0.81 0.88 0.83

B 0.09 0.41 0.19 0.12 0.17

Gdh

(N) 23 18 17 25 20

A 1.00 1.00 1.00 1.00 1.00

a-Est-2
(N) 38 20 17 25 20

A 0.68 0.40 0.88 0.86 0.85

B 0.32 0.60 0.12 0.14 0.15

b-Est
(N) 23 17 17 18 20

A 0.72 0.82 0.85 0.83 0.85

B 0.28 0.18 0.15 0.17 0.15

Aldox

(N) 46 28 17 25 20

A 1.0 1.0 1.0 1.0 1.0

Cat

(N) 46 29 17 25 20

A 1.0 1.0 1.0 1.0 1.0

Got

(N) 3 10 17 19 6

A – 0.10 0.32 0.68 0.33

B 0.33 0.55 0.53 0.32 0.33

C 0.67 0.35 0.15 – 0.34

He 0.27 0.31 0.28 0.22 0.31
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McCauley, 1999), it is fairly robust to many of those violations. It has co-varied positively

with direct estimates of migration (Neigel, 1997) and can still be useful, if only to compare

with similar estimates from other organisms (Neigel, 2002).
3. Results

Levels of genetic variability in the populations of P. nigra were consistently high and

varied between 0.22 and 0.31 (Table 1). Similar values have been found in colonial

ascidians and other marine invertebrates (Aron and Solé-Cava, 1991; Sole-Cava and

Thorpe, 1991) that would indicate that shared ecological and physidogical characteristics

among marine invertebrates play a more important role in the maintenance of variability

than phylogenetic relationships, in which ascidians and vertebrates are closer.

A significant heterozygote deficiency (0.01 <P < 0.05) after Bonferroni’s correction;

(Lessios, 1992) was found for the a-Est2 locus in the population from Florida (data not

shown). Heterozygote deficiencies are very common in marine invertebrates, and many

mechanisms have been suggested to explain them (Zouros and Foltz, 1984). Since all

individuals analysed here were genetically unique, i.e., had different multi-locus geno-

types, the excess of homozygotes cannot be explained as the effect of asexual reproduc-

tion, as observed in other species of ascidians (Ayre et al., 1997). The high homogeneity of

the populations studied (see below) also indicates that population mixing (the Wahlund

effect; David et al., 1997; Wahlund, 1928) is also not an adequate explanation for these

deficiencies. Alternative explanations, based on inbreeding, natural selection, aneuploidy

or the presence of null alleles (Zouros and Foltz, 1984), cannot be discarded for P. nigra

populations.

Levels of pairwise genetic distances (Nei, 1972; Nei, 1978) between the studied

populations were remarkably low (between 0.000 and 0.078; Table 2). Wright’s (1978)

inbreeding index (mean FST = 0.083, Nem = 2.76) indicates population structuring, but no

major differentiation between samples along the 8000 km of Atlantic coast analysed. This

suggests that there is a high genetic homogeneity of the populations of P. nigra over a

large geographical distribution from southern Brazil to southern Florida in the U.S.

Considering the average 10:1 ratio between nominal and effective migrants (Frankham,

1995), Nem = 2.8 would translate into an average of about 28 larvae being exchanged

between the populations per generation, along the 8000 km of the studied area. This result

strongly suggests that P. nigra, contrary to most wide-ranged marine invertebrates studied

to date, is a single species along the entire Atlantic Coast.
Table 2

Pairwise genetic distances (Nei 1972) for populations of P. nigra studied

Florida Panama Cabo Frio Angra dos Reis São Paulo

Florida – 0.062 0.026 0.078 0.009

Panama – – 0.055 0.073 0.067

Cabo Frio – – – 0.018 0.000

Angra – – – – 0.029
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4. Discussion

It is remarkable that populations of P. nigra could exchange so many individuals over

such long geographical distances, particularly in face of the distinct surface ocean

circulation cells of the North and South Atlantic oceans. Solitary ascidians, such as P.

nigra, are known to show lower levels of genetic structure than colonial species (Ayre et

al., 1997; Kano et al., 2001; but see also Astorga et al., 2002). For instance, the colonial

ascidian Botryllus niger (Aron and Solé-Cava, 1991) was found to be in fact two distinct

species along 400 km coast of Brazil. However, major sedimentation and low salinity

barriers of the mouth of the Amazon and the Orinoco rivers (McCartney et al., 2000)

make the genetic homogeneity of P. nigra still puzzling. It should be noted, though, that

Indian and Pacific specimens of P. nigra were not sampled in the present study so the

taxonomic status of those populations remains to be tested.

Interestingly, much of the cosmopolitanism attributed to benthic marine invertebrate

species during the first half of the 20th century turned out to be, under closer scrutiny, a

taxonomical artifact (for reviews, see Knowlton, 1993; Knowlton, 2000; Thorpe and Solé-

Cava, 1994). This artifact seems to originate, basically, from the coupling of two facts. The

first is that marine invertebrates often have high levels of morphological conservativeness

compared to other animals. These may facilitate cryptic speciation events. The second fact

is that taxonomists have many times dismissed, as intraspecific variation, subtle but clear

morphological differences between samples from different geographical areas (Klautau et

al., 1999; Solé-Cava and Boury-Esnault, 1999; Solé-Cava et al., 1991). Additionally,

taxonomists that suggested broad geographical distributions to benthic marine invertebrate

species overestimated the dispersal capabilities of their planktonic larvae (Knowlton and

Keller, 1986; Pechenik, 1999; Silva and Russo, 2000; Todd, 1998).

One should expect, naturally, that truly cosmopolitan species do exist and exhibit

extremely high dispersal capabilities. Although, it is difficult to imagine a larva that can

frequently disperse over all major oceans, P. nigra’s populations are not necessarily

interbreeding at the present time. If a single recent, naturally or antropogenically mediated,

colonization event is responsible for the spreading of these ascidians over the Atlantic,

populations are not expected to be in migration-drift equilibrium (Bohonak et al., 2002). In

this case, the homogeneity along the Atlantic coast is transitory and it is a consequence of

the short time that these populations may have had to diverge genetically (Holland, 2000;

Lazoski et al., 2001).

In general, ascidians seem to be very efficient in colonizing new areas (Lambert and

Lambert, 1998) and they are common invading species of the fauna of bays and harbours

(Boyd et al., 1990; Ben-Shlomo et al., 2001; Stoner et al., 2002). P. nigra is one of the first

colonizers on vertical slopes, grows fast and seems to have a short (< 2 years) life-

expectancy at settlement (da Rocha et al., 1999b), characteristics often found in bio-

invading species (Holland, 2000). Solitary ascidian species can be efficient bio-invaders.

For example, the large Australian ascidian Pyura praeputialis has recently invaded the

coast of Chile (Astorga et al., 2002). Nevertheless, in a single recent colonization event,

populations are expected to present low of genetic variability, because of the founder

effects related to the process of invasion (Holland, 2000). This is the case of P.

praeputialis, where only 3 out of 17 allozyme loci analysed were polymorphic (18%
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polymorphism). However, the populations of P. nigra studied here had high levels of

genetic variability (70% polymorphism; data not shown). Therefore, if recent population

expansion is the explanation for the observed genetic homogeneity, it is likely that it

occurred through several recurrent colonization events.

Since it is hard to speculate on any major natural process that could promote gene flow

over such long distances consistently, the events were probably antropogenically medi-

ated, such as transport in ballast water of ships (Carlton, 1985; Carlton, 1996; Nishikawa

et al., 2000). The impact of the 35,000 currently estimated cargo ships circulating on the

oceans on the distribution of species is enormous, particularly considering that each of

those ships can carry up to 150,000 tons of ballast water that may carry gametes, larvae

and adults to the most distant shores (Holland, 2000; Solé-Cava, 2001). Most molecular

systematic studies are concentrated on a restricted geographic region of a couple of

hundred kilometers and their conclusions are naturally limited by this restriction. Broader

range studies are necessary in order to verify the actual taxonomic status of cosmopolitan

species.
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