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ABSTRACT 
In this short review we will discuss the recent contributions of genetics to our 

understanding of the biology and evolution of sponges, particularly on the reappraisal of 
longstanding beliefs held by sponge taxonomists. The main questions addressed are the 
following. Are sponges animals? After centuries of controversy, there seems to be a 
consensus, now, that sponges are metazoans. Phylogenetic studies also indicate that animals 
are closely related to choanoflagellates. This indicates that choanoflagellate-like structures 
should not be considered a synapomorphy of the Porifera. Is the phylum Porifera 
monophyletic? Three main hypotheses are still prevailing: the Porifera are monophyletic; the 
Porifera are paraphyletic with the Hexactinellida being considered the more basal group of 
sponges, mostly because of their syncytial nature, or the Demospongiae and the 
Hexactinellida together, the Calcispongia being a sister-group of the Eumetazoa. Are the 
currently accepted Classes supported by molecular data? Molecular data confirms the 
presence of two monophyletic clades within the Calcispongia. On the other hand, the 
distinction of demosponge classes Tetractinomorpha and Ceractinomorpha, based on an 
oviparous versus viviparous reproduction, has been rejected by all molecular phylogenies 
produced so far. Are there true cosmopolitan sponge species? All putative cosmopolitan 
sponges species have turned out to be, under molecular scrutiny, groups of evolutionary very 
distinct species. We believe, thus, that the number of true cosmopolitan sponges is likely to 
be very small. Can sponge populations be homogeneous over large areas? Most sponge 
species studied to date have shown a rather small capability for long-range dispersal. This 
indicates that sponge larvae, both from viviparous and oviparous species, do not disperse very 
much. How important is asexual reproduction in the establishment and maintenance of 
sponge populations? Molecular markers confirm the presence of extensive asexual 
reproduction in sponges. The possibility of larval fusion and chimerism has important 
evolutionary consequences, but has not yet been tested molecularly. 
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INTRODUCTION 
The use of a genetic approach has been a valuable contribution to the study of 

many long-standing problems in sponge taxonomy, from events that happened over 
600 million years ago to those that are happening in an ecological or 
microevolutionary time. But, perhaps more importantly, it has also challenged many 
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conclusions that were considered by taxonomists to be quite well established. In this 
short review we will discuss the recent contributions of genetics to our 
understanding of the biology and evolution of sponges. 

The first genetic work on sponges was the one by CONNES et al., (1974), using 
isozyme electrophoresis to analyse populations of Suberites massa from the Thau 
lagoon (NW-Mediterranean, French coast). The first to use molecular sequences for 
formulating phylogenetic hypotheses were those of DAMS et al., (1982), who used 5S 
rRNA sequences for a preliminary investigation on the place of Porifera among 
Metazoa, and that of KELLY-BORGES et al., (1991) who used 18S sequences to 
formulate phylogenetic hypotheses for sponges of the order Hadromerida. Twenty 
years have now passed since those pioneering works, and over 40 nuclear genes have 
been sequenced in sponges (GenBank data). Although this is still a very small 
number, considering the developments in genome projects of other animals, it is, 
nonetheless, a major progress in relation to what we knew of the molecular biology 
of sponges not long ago. Reviews of genetic approaches to sponge taxonomy and 
evolution have been published regularly (SOLÉ-CAVA & THORPE, 1987, 1994; SOLÉ-
CAVA & BOURY-ESNAULT, 1999; BORCHIELLINI et al., 2000; MÜLLER, 2001; VAN 
OPPEN et al., 2003). 

 
Are sponges animals?  
Whether the sponges are highly specialized protists with no relationships to true 

Metazoans or constitute a basal metazoan lineage has been a long standing debate 
among zoologists. During the 4th symposium of the Zoological Society Professor 
Yves Delage (1899) said that “Undoubtedly their place is among the Metazoa”. 
Nevertheless, that position was never completely settled, so that even a century later 
it still was necessary to repeat that, based on sequence data, the “Porifera should be 
placed into the Kingdom Animalia” (MÜLLER, 1998). 

Spongologists had been convinced of the metazoan nature of sponges, based on 
the sexual reproduction, embryology and cell diversity (DELAGE, 1899; BRIEN, 
1967), but due to their simple organisation and their plasticity, not all biologists 
accepted this and, indeed, some textbooks still describe this issue as controversial. 
Recently the question has received convergent answers through a better knowledge 
of ultrastructural, biochemical and molecular features of sponges and many 
synapomorphies currently support the monophyly of Metazoa with the sponges 
included (e.g. MANUEL et al., 2000). 

 
Are the choanoflagellates the sister-group of Metazoa? 
In most text-books the Porifera are considered as one phylum which has a basal 

position within Metazoans. Besides supporting the basal positioning of sponges in 
the metazoan tree, molecular phylogenies based on 18S rRNA, Hsp 70 and mtDNA 
(PETERSON & EERNISSE, 2001; SNELL et al., 2001; LANG et al., 2002) have led to the 
revival of an old idea (JAMES-CLARK, 1866, 1868), according to which the 
choanoflagellates are the sister-group of the Metazoa. Such a hypothesis suggests a 
somewhat sponge-like ancestry for the metazoans as a whole (BORCHIELLINI et al., 
2001; COLLINS & VALENTINE, 2001; PETERSON & EERNISSE, 2001). If that proves 
to be true, fundamental sponge features (particularly the presence of choanocytes) 
classically considered as the few supporting apomorphies for Porifera would be in 
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fact a plesiomorphy of the Metazoa. This lack of phylogenetic support for the 
Phylum Porifera could indicate that it is paraphyletic (see below). 

 
Is the phylum Porifera monophyletic? 
The phylogenetic relationships among classes, orders or families of sponges still 

remain too confusing to positively answer this question. Three main clades are 
presently recognised: Hexactinellida, Demospongiae and Calcispongia.  

In fact, since the 19th century several authors have proposed at least two phyla 
within the sponge grade of organisation. There are two main hypotheses:  

1.- Hexactinellida constitute a separate phylum from other sponges (BIDDER, 
1929; BERGQUIST, 1985) 

2.- Hexactinellida and Demospongiae cluster together in a separate phylum, and 
Calcispongia is the sister group of the Eumetazoa (GRAY, 1867; ZRZAVY et al., 1998; 
BORCHIELLINI et al., 2001, and others) 

In the first hypothesis the syncytial organisation of Hexactinellida is considered 
as a plesiomorphic character, and the cellular organisation as a synapomorphy of a 
clade made of Demospongiae, Calcispongia and Eumetazoa. However if the 
choanoflagellates are the sister group of Metazoa cell organization is a 
synapomorphy of all Metazoa and syncytial organization becomes, thus, an 
apomorphy of Hexactinellida.  

In the second hypothesis it is considered that the synapomorphies for the 
Hexactinellida/ Demospongiae clade are the siliceous nature of the skeleton and the 
intracellular secretion of siliceous spicules around an axial filament. Three 
independent sets of molecular data: 18S rRNA, 28S rRNA and Protein Kinase C 
(KRUSE et al., 1998; ZRZAVY et al., 1998; BORCHIELLINI et al., 2001; MEDINA et al., 
2001; PETERSON & EERNISSE, 2001) give support to the placing of Calcispongia as 
the sister-group of the Eumetazoa. However, the position of Hexactinellida, either as 
forming a monophyletic group with the Demospongiae or still remaining as a 
separate phylum is still not well resolved, whatever the gene and the reconstruction 
method used. There is with the sequences of Hexactinellida a problem of long-
branch attraction which by the time being is not resolved. Chemical data indicate a 
closer relationship between Hexactinellida and Demospongiae, at the exclusion of 
Calcarea (THIEL et al., 2002), but that hypothesis needs to be confirmed by other 
molecular markers. A diagram comparing the concurring alternatives is presented 
below: 
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Are the currently accepted “Classes” supported by molecular data? 
Within the Hexactinellida too few sequences are available to allow any 

conclusions to be drawn about their internal classification. 
Within the Calcispongia 18S rDNA sequence data confirm the hypothesis of 

BIDDER (1898) and MINCHIN (1900) of two monophyletic clades: Calcinea and 
Calcaronea (MANUEL et al., 2003, MANUEL et al., 2004). 

Within the Demospongiae the phylogenetic hypothesis made by LÉVI (1956) 
based on morphology and embryology has been under dispute for the last 20 years. 
The distinction of the two sub-classes: Tetractinomorpha and Ceractinomorpha, 
based on an oviparous versus viviparous strategy of reproduction has been rejected 
by all molecular phylogenies produced so far. However for the time being the 
number of sequences available and the number of taxa analysed for the different 
recognized orders is too small to obtain supported phylogenetic hypotheses for the 
deep nodes of Demospongiae.  

However phylogenetic hypotheses have been recently proposed at different levels 
from orders to species. For example, it has been shown that Astrophorida and 
Spirophorida constitute a monophyletic clade which corresponds to Tetractinellida 
Marshall, 1876. The molecular tree, in this case, is congruent with morphological 
characters, the synapomorphy for Tetractinellida being the presence of a tetraxon 
spicule (CHOMBARD et al., 1998). However within Tetractinellida several polyphyletic 
families have been detected, like the Ancorinidae and Geodiidae, which need a 
revision from molecular and morphological points of view. For the Haplosclerida, 
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on the contrary, a very recent work shows the non-congruence between the 
molecular tree and the currently accepted classification, polyphyly being found 
within families and genera (MCCORMACK et al., 2002). The polyphyly of 
Halichondrida, firstly recognized by CHOMBARD & BOURY-ESNAULT (1999), has 
been confirmed by a recent work on Spongosorites (MCCORMACK & KELLY, 2002). 
The phylogenetic revision of Axinellidae (Halichondrida) (ALVAREZ et al., 2000), has 
also demonstrated a discrepancy between molecular and morphological trees, not 
only the Axinellidae but also the genus Axinella being polyphyletic in the molecular 
tree. It is becoming each time more common for taxonomists to rely on molecular 
phylogenies to give support to studies of new species or redescription of taxa whose 
affinities are dubious. The relationships of Thymosiopsis with Thymosia and 
Chondrillidae were inferred from sequences of 28S rRNA (VACELET et al., 2000) and 
confirmed the previous assumptions of monophyly of the Chondrosida based only 
on morphology and cytology. In these proceedings another example is given by the 
reallocation of the excavating genus Alectona to the Tetractinellida instead of 
Hadromerida based on the molecular tree and a reevaluation of morphological 
characters (BORCHIELLINI et al., 2004). When morphological and molecular trees are 
not congruent, we need to choose additional genes but, above all, to reassess very 
carefully the morphological characters without a preconceived idea. 

 
Species and population level studies 
Genetic studies of populations are different from phylogenetic ones not only 

because of the taxonomic level approached, but also because of their different 
requirements and assumptions. For molecular phylogenetic studies, one of the most 
important issues is assuring homology. In this case, intra-group variation is an 
undesirable source of noise and homoplasy. On the other hand, intra-group variation 
is the raw material for population genetics. One of the immediate consequences of 
this difference is that sample sizes at the terminal nodes are usually very small 
(typically 1 - 3 individuals) in phylogenetic studies, but large (10 - 100 
individuals/terminal node) in population studies (AVISE, 1994; SILVA & RUSSO, 
2000). Also, the genes selected for population analyses must be very variable 
(typically with heterozygosities above 0.05 or sequence divergences around 1%).  

Mitochondrial genes have been extensively used for population and species level 
genetics of marine invertebrates (reviews in e.g. AVISE et al., 1987; AVISE, 1995). 
However, to date no complete mitochondrial genome of sponges has been produced 
(the largest fragment sequenced so far is only 2.6 Kbase long: WATKINS & 
BECKENBACH, 1999), so the choice of mitochondrial genes to study is still very 
limited. The few available data, mostly on Cytochrome Oxidase I (DURAN et al., 
2002b; ERPENBECK et al., 2002), indicate that the mitochondrial genes of sponges, 
like those of anthozoans (SHEARER et al., 2002), may evolve extremely slowly for 
population-level analyses. A complete sequence of mitochondrial DNA of sponges is 
urgently needed, specially considering the unusual features, like linear molecules and 
the presence of introns, observed on cnidarian mtDNA (BEAGLEY et al., 1996; 
PONT-KINGDON et al., 2000; VAN OPPEN et al., 2002). In any case, care must be 
taken when working on mtDNA of sponges, because of the possible existence of 
paralogous nuclear copies of mitochondrial genes (see WILLIAMS & KNOWLTON, 
2001 for an example on Crustaceans). 
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The most commonly used nuclear genes in invertebrate population genetics 
(including sponges) are allozymes (reviewed in THORPE & SOLÉ-Cava, 1994; SOLÉ-
CAVA & BOURY-ESNAULT, 1999; VAN OPPEN et al., 2003). Although allozymes are 
good overall markers for population and species level systematics, they have the 
major drawback of needing fresh or frozen samples. Alternative nuclear markers are, 
thus, important to be found. Good candidates are microsatellites (TAUTZ & RENZ, 
1984; TAUTZ, 1989; DURAN et al., 2002a; KNOWLTON et al., 2002) and internal 
transcribed spacers (LOPEZ et al., 2002; WÖRHEIDE et al., 2002, 2003). Potential 
problems with the use of sponge microsatellites are the difficulties in ascertaining the 
origin (sponge/symbiont) of the bands observed (e.g. BRADLEY & VIGILANT, 2002) 
and the possibility of homoplasy between alleles of the same size (see e.g. ORTI et al., 
1997). Problems with internal transcribed spacers are the difficulty in alignment and 
the possibility of comparing paralogous sequences when gene conversion is not 
complete (KLINBUNGA et al., 1998; DIEKMANN et al., 2001) 

Another source of useful information for population genetics of marine 
invertebrates has been the EPIC (exon-primed intron crossing; PALUMBI & BAKER, 
1994) approach, where PCR primers are designed for conserved regions in exons 
flanking variable introns (e.g. CORTE-REAL et al., 1994; BIERNE et al., 2000; HASSAM 
et al., 2000; MÜLLER et al., 2002). EPICs have not been used, so far, for population 
analyses of sponges (VAN OPPEN et al., 2003), but appear as natural choices for 
future work on their population genetics, since introns are present in sponges, albeit 
in smaller quantity and size than in the Eumetazoa (MÜLLER et al., 2002). Of the 40 
coding nuclear sequences from sponges available in GenBank, 7 appear as potential 
candidates for EPIC analyses: Calcyphosin (YUASA et al., 2002); Calmodulin (YUASA 
et al., 2001); Galectin (MÜLLER et al., 2002); BHP1g protein, linked to apoptotic 
pathways (WIENS et al., unpubl. data); Tyrosine kinase (ROUSSET et al., 1995; 
GAMULIN et al., 1997) and the stress activated kinases p38 and JNK (MÜLLER et al., 
2002). Other intronic loci, whose positions are evolutionary conserved and have 
been used to study populations of other marine invertebrates are the Mac-1 Actin 
(OHRESSER et al., 1997; DAGUIN et al., 2001), the Integrin beta subunit (SCHMITT & 
BROWER, 2001), the Pax C (CATMULL et al., 1998; VAN OPPEN et al., 2000) and the 
Elongation factor alpha (FRANCE et al., 1999; REGIER & SHULTZ, 2001). 

Studies at the population level also include the verification of species boundaries, 
particularly the detection of cryptic species, and the study of clonal structures, which 
will be discussed below.  

 
Are there any true cosmopolitan sponge species? 
In the end of the XIX century, sponge taxonomists marvelled at the huge 

diversity of the material deployed to them by the big oceanographic cruises of the 
time. They interpreted that diversity as resulting from speciation, and named many 
new species (e.g. RIDLEY & DENDY, 1887; SOLLAS, 1888; LENDENFELD, 1889), 
starting a “splitter” phase of sponge taxonomy. For most of the XX century, 
however, that high diversity was reinterpreted as intraspecific phenotypic plasticity of 
species supposedly widely dispersed by their planktonic larvae. Consequently, 
synonymy lists and accepted species ranges were considerably extended (e.g. SARÀ, 
1956; BURTON, 1963; KOLTUN, 1970), during what could be described as the 
“lumper” phase of sponge taxonomy. That position was challenged by the 
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application of new approaches to sponge systematics, particularly scuba diving and 
allozyme electrophoresis. Scuba diving allowed taxonomists to have a more intimate 
view of their subjects, which led to a better understanding of sponge biology. 
Molecular systematics helped to detect reproductive isolation and estimate levels of 
genetic differentiation between supposedly conspecific morphotypes. Both 
approaches indicated that the taxonomists of the XIX century were right: sponges 
are very diverse and even minute morphological differences can indicate species-
level differentiation (KLAUTAU et al., 1999; SOLÉ-CAVA & BOURY-ESNAULT, 1999; 
BORCHIELLINI et al., 2000; VAN OPPEN et al., 2003).  

It is interesting to note that, even when the genetic divergence observed by 
reproductively isolated morphotypes is small (e.g. SOLÉ-CAVA & THORPE, 1986; 
SOLÉ-CAVA et al., 1991), further, independent, ecological or microbiological work 
confirmed that they did belong to different species (POND, 1992; MARGOT et al., 
2002). In fact, every supposedly cosmopolitan sponge species analysed to date 
turned out to be, under closer molecular scrutiny, a group of many highly divergent 
but morphologically similar species (e.g. KLAUTAU et al., 1994, 1999; MURICY et al., 
1996; WÖRHEIDE et al., 2002, 2003). Hence, we believe that very few sponge species, 
if any, will be found to truly occur in more than one ocean.  

One of the consequences of this recent shift in taxonomic philosophy has been 
the change in the estimated number of extant sponge species, from around 8,000 in 
the 1970’s (BERGQUIST, 1978) to over 15000 in the 1990’s (HOOPER, 1994).  

The underestimation of species diversity, particularly in the case of fake 
cosmopolitan (and common) species has profound consequences. For example, 
many physiological and chemical studies have been performed with “Halichondria 
japonica” (e.g. HAYASHI et al., 1991). However, H. japonica turned out to be, in fact, a 
group of different species (HOSHINO et al., 2004). The same seems to be true for 
Halichondria panicea, arguably the biologically most studied sponge species, and cited 
all over the world, and which is very likely to be a species complex (KNOWLTON et 
al., 2002). Artificial lumping of different species can also explain some of the 
variability observed in pharmacologically important natural products of sponge 
species (MILLER et al., 2001). 

 
Can sponge populations be homogeneous over large areas? 
Most populations of sponge species studied to date have shown to be highly 

structured, whatever the molecular marker used (SOLÉ-CAVA et al., 1992; BENZIE et 
al., 1994; DAVIS et al., 1996; BOURY-ESNAULT et al., 1999; KLAUTAU et al., 1999; 
LAZOSKI et al., 2001; MILLER et al., 2001; WÖRHEIDE et al., 2002, 2003; KNOWLTON 
et al., 2002. Review in VAN OPPEN et al., 2003). This indicates that sponge larvae, 
both from viviparous and oviparous species, do not disperse very far, or that some 
type of strong exclusion of recruits from different areas may occur after microhabitat 
colonization (DE MEESTER et al., 2002). One exception is the viviparous Chondrosia 
sp. from the Western Atlantic, whose populations show a remarkable homogeneity 
over 8,000 km [unbiased gene Identity (NEI, 1978) = 0.92; LAZOSKI et al., 2001)].  

Although rafting has been suggested as a possible means of dispersal in some 
species (MALDONADO & URIZ, 1999), its effectiveness for gene flow has never been 
tested through the use of molecular markers (WÖRHEIDE et al., 2004).  
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How important is asexual reproduction for the establishment and maintenance of 
sponge populations? 

Like many other marine invertebrates, sponges can reproduce asexually (e.g. 
CORRIERO et al., 1996). However, it is yet not clear how much of a sponge 
population is made of clone-mates, i.e. what is the proportion of genetically unique 
(= genets; HARPER, 1977) and genetically identical (= ramets) individuals in sponge 
populations. Graft acceptance/rejection experiments indicate that asexual 
reproduction can be highly important in the composition of sponge populations 
(KAYE, 1983; NEIGEL, 1985; ILAN & LOYA, 1990; MARKEZICH & FRANCIS, 1991; 
reviews in FERNÀNDEZ-BUSQUETS & BURGER, 1999; MÜLLER et al., 1999) 

The number of genes involved in self/non-self recognition in sponges is still not 
known, but it may be small and highly polymorphic (FERNÀNDEZ-BUSQUETS & 
BURGER, 1997) and the mechanism of historecognition only now starts to be 
understood (FERNÀNDEZ-BUSQUETS et al., 2002; MÜLLER et al., 2002). This means 
that, although potentially useful, it is unclear how accurate grafting experiments will 
be for estimating the extent of asexual reproduction in sponge populations.  

Some genetic evidence of clonality, based on compound multi-locus genotyping 
has been found on Latrunculia spp. (MILLER et al., 2001), in Chondrilla (KLAUTAU, 
pers. comm.) and in Chondrosia (LAZOSKI et al., 2001). Nonetheless, there are no 
published studies, to date, where carefully mapped sponge individuals were 
compared, on different scales, using molecular markers, like done with other sessile 
marine invertebrates (see e.g. COFFROTH & LASKER, 1998; PORTER et al., 2002).  

An interesting situation that could be observed in sponges would be the presence 
of different genets living within one single ramet (SOLÉ-CAVA & THORPE, 1994), as 
observed, for example, in ascidians (SOMMERFELDT & BISHOP, 1999). One of the 
possible consequences of fusion, particularly at the larval stage, would be an 
increased probability of survival in the face of predators, particularly grazers 
(RINKEVICH & WEISSMAN, 1987; GROSBERG, 1988). However, this hypothesis was 
found to be false, at least for the sponge Crambe crambe (MALDONADO, 1998). 
Allogeneic fusion in sponges could be more difficult to detect than in bryozoans and 
colonial ascidians, because, unlike those organisms, in sponges no individual polyps 
can be identified. This means that allogeneic fusion in sponges could result in a 
complete cell mixing between the contributing genotypes (SOLÉ-CAVA & THORPE, 
1994). A practical consequence of that for genetic studies would be, at least for 
codominant markers like allozymes, EPICs and microsatellites, the observation of 
high heterozygote excesses, which have not been reported to date. Recent molecular 
techniques, like in situ PCR, make it, now, possible to determine the fate of the 
individual cells in a sponge chimera, and highly variable markers have already been 
used for in vitro cell line identification of Axinella corrugata (LOPEZ et al., 2002). 
Other highly variable markers that could potentially be used for the study of 
allogeneic fusion would be the immunoglobulin-like genes (PANCER et al., 1998) and 
the aggregation factor core proteins (MAFp3; FERNÀNDEZ-BUSQUETS & BURGER, 
1997). 
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CONCLUSIONS 
Although much progress has been made since the Brisbane Symposium 

concerning molecular phylogeny and genetics in sponges, it remains necessary to 
considerably increase the knowledge on these animals because of their key position 
at the base of the animal tree. The most important challenge for the next years will 
be to verify the hypothesis of the paraphyly of the Porifera, particularly in relation to 
the relationships of Hexactinellida and Demospongiae, and to test the monophyly of 
Demospongiae by comparing sequences of a large and thorough group of species 
from the currently accepted families and orders. A better knowledge on the number 
of chromosomes present in species of the different clades would allow making 
hypotheses on the chromosomal evolution of the group. Given the high incidence of 
cryptic speciation in sponges, we recommend that taxonomists and ecologists be 
extremely careful in assigning specimens to species described in a different ocean 
from the collection site. The study of population structure in sponges is still in its 
infancy, and more work is necessary, especially with species where independent 
estimates of larval dispersal could be obtained, to verify the correlation between 
predicted and realized gene flow in sponge populations.  
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